Reference: Chang DT, et al. (2013) YGA: identifying distinct biological features between yeast gene sets. Gene 518(1):26-34

Reference Help

Abstract

The advance of high-throughput experimental technologies generates many gene sets with different biological meanings, where many important insights can only be extracted by identifying the biological (regulatory/functional) features that are distinct between different gene sets (e.g. essential vs. non-essential genes, TATA box-containing vs. TATA box-less genes, induced vs. repressed genes under certain biological conditions). Although many servers have been developed to identify enriched features in a gene set, most of them were designed to analyze one gene set at a time but cannot compare two gene sets. Moreover, the features used in existing servers were mainly focused on functional annotations (GO terms), pathways, transcription factor binding sites (TFBSs) and/or protein-protein interactions (PPIs). In yeast, various important regulatory features, including promoter bendability, nucleosome occupancy, 5'-UTR length, and TF-gene regulation evidence, are available but have not been used in any enrichment analysis servers. This motivates us to develop the Yeast Genes Analyzer (YGA), a web server that simultaneously analyzes various biological (regulatory/functional) features of two gene sets and performs statistical tests to identify the distinct features between them. Many well-studied gene sets such as essential, stress-response, TATA box-containing and cell cycle genes were pre-compiled in YGA for users, if they have only one gene set, to compare with. In comparison with the existing enrichment analysis servers, YGA tests more comprehensive regulatory features (e.g. promoter bendability, nucleosome occupancy, 5'-UTR length, experimental evidence of TF-gene binding and TF-gene regulation) and functional features (e.g. PPI, GO terms, pathways and functional groups of genes, including essential/non-essential genes, stress-induced/-repressed genes, TATA box-containing/-less genes, occupied/depleted proximal-nucleosome genes and cell cycle genes). Furthermore, YGA uses various statistical tests to provide objective comparison measures. The two major contributions of YGA, comprehensive features and statistical comparison, help to mine important information that cannot be obtained from other servers. The sophisticated analysis tools of YGA can identify distinct biological features between two gene sets, which help biologists to form new hypotheses about the underlying biological mechanisms responsible for the observed difference between these two gene sets. YGA can be accessed from the following web pages: http://cosbi.ee.ncku.edu.tw/yga/ and http://yga.ee.ncku.edu.tw/.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Chang DT, Li WS, Bai YH, Wu WS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference