Reference: Lev S, et al. (2012) The Crz1/Sp1 Transcription Factor of Cryptococcus neoformans Is Activated by Calcineurin and Regulates Cell Wall Integrity. PLoS One 7(12):e51403

Reference Help

Abstract

Cryptococcus neoformans survives host temperature and regulates cell wall integrity via a calcium-dependent phosphatase, calcineurin. However, downstream effectors of C. neoformans calcineurin are largely unknown. In S. cerevisiae and other fungal species, a calcineurin-dependent transcription factor Crz1, translocates to nuclei upon activation and triggers expression of target genes. We now show that the C. neoformans Crz1 ortholog (Crz1/Sp1), previously identified as a protein kinase C target during starvation, is a bona fide target of calcineurin under non-starvation conditions, during cell wall stress and growth at high temperature. Both the calcineurin-defective mutant, Deltacna1, and a CRZ1/SP1 mutant (Deltacrz1) were susceptible to cell wall perturbing agents. Furthermore, expression of the chitin synthase encoding gene, CHS6, was reduced in both mutants. We tracked the subcellular localization of Crz1-GFP in WT C. neoformans and Deltacna1 in response to different stimuli, in the presence and absence of the calcineurin inhibitor, FK506. Exposure to elevated temperature (30-37 degrees C vs 25 degrees C) and extracellular calcium caused calcineurin-dependent nuclear accumulation of Crz1-GFP. Unexpectedly, 1M salt and heat shock triggered calcineurin-independent Crz1-GFP sequestration within cytosolic and nuclear puncta. To our knowledge, punctate cytosolic distribution, as opposed to nuclear targeting, is a unique feature of C. neoformans Crz1. We conclude that Crz1 is selectively activated by calcium/calcineurin-dependent and independent signals depending on the environmental conditions.

Reference Type
Journal Article
Authors
Lev S, Desmarini D, Chayakulkeeree M, Sorrell TC, Djordjevic JT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference