Reference: Liberti SE, et al. (2013) Exonuclease 1 preferentially repairs mismatches generated by DNA polymerase a. DNA Repair (Amst) 12(2):92-6

Reference Help

Abstract

The Saccharomyces cerevisiae EXO1 gene encodes a 5' exonuclease that participates in mismatch repair (MMR) of DNA replication errors. Deleting EXO1 was previously shown to increase mutation rates to a greater extent when combined with a mutator variant (pol3-L612M) of the lagging strand replicase, DNA polymerase d (Pol d), than when combined with a mutator variant (pol2-M644G) of the leading strand replicase, DNA polymerase ? (Pol ?). Here we confirm that result, and extend the approach to examine the effect of deleting EXO1 in a mutator variant (pol1-L868M) of Pol a, the proofreading-deficient and least accurate of the three nuclear replicases that is responsible for initiating Okazaki fragment synthesis. We find that deleting EXO1 increases the mutation rate in the Pol a mutator strain to a significantly greater extent than in the Pol d or Pol ? mutator strains, thereby preferentially reducing the efficiency of MMR of replication errors generated by Pol a. Because these mismatches are closer to the 5' ends of Okazaki fragments than are mismatches made by Pol d or Pol ?, the results not only support the previous suggestion that Exo1 preferentially excises lagging strand replication errors during mismatch repair, they further imply that the 5' ends serve as entry points for 5' excision of replication errors made by Pol a, and possibly as strand discrimination signals for MMR. Nonetheless, mutation rates in the Pol a mutator strain are 5- to 25-fold lower in an exo1? strain as compared to an msh2? strain completely lacking MMR, indicating that in the absence of Exo1, most replication errors made by Pol a can still be removed in an Msh2-dependent manner by other nucleases and/or by strand displacement.

Reference Type
Journal Article
Authors
Liberti SE, Larrea AA, Kunkel TA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference