Take our Survey

Reference: Stobaugh JT, et al. (2013) Prefractionation of Intact Proteins by Reversed-Phase and Anion-Exchange Chromatography for the Differential Proteomic Analysis of Saccharomyces cerevisiae. J Proteome Res 12(2):626-36

Reference Help

Abstract

The need for multidimensional separations for bottom-up proteomic analyses has been well demonstrated by many over the past decade. The vast majority of reported approaches has focused primarily on improving the separation once the sample has already been digested. The work presented in this study shows an improvement in multidimensional approaches by prefractionation of intact proteins prior to digestion and separation of the peptides. Two modes of intact protein separation were compared, anion-exchange and reversed-phase, to assess the utility of each mode for the purpose of fractionation. Each of the samples was then enzymatically digested and analyzed by RP-UPLC-MS(E). To assess the validity of each approach, baker's yeast (Saccharomyces cerevisiae) was grown on two different carbon sources, glycerol and dextrose. More proteins were identified by the reversed-phase prefractionation approach (546) than were found by the anion-exchange method (262). As a result, there was much greater coverage of the metabolic pathways of interest for the reversed-phase method than for the anion-exchange method.

Reference Type
Journal Article
Authors
Stobaugh JT, Fague KM, Jorgenson JW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference