Reference: Loya TJ, et al. (2013) Yeast Nab3 Protein Contains a Self-assembly Domain Found in Human Heterogeneous Nuclear Ribonucleoprotein-C (hnRNP-C) That Is Necessary for Transcription Termination. J Biol Chem 288(4):2111-7

Reference Help

Abstract

Nab3 is an RNA-binding protein whose function is important for terminating transcription by RNA polymerase II. It co-assembles with Nrd1, and the resulting heterodimer of these heterogeneous nuclear ribonucleoprotein-C (hnRNP)-like proteins interacts with the nascent transcript and RNA polymerase II. Previous genetic analysis showed that a short carboxyl-terminal region of Nab3 is functionally important for termination and is located far from the Nab3 RNA recognition domain in the primary sequence. The domain is structurally homologous to hnRNP-C from higher organisms. Here we provide biochemical evidence that this short region is sufficient to enable self-assembly of Nab3 into a tetrameric form in a manner similar to the cognate region of human hnRNP-C. Within this region, there is a stretch of low complexity protein sequence (16 glutamines) adjacent to a putative a-helix that potentiates the ability of the conserved region to self-assemble. The glutamine stretch and the final 18 amino acids of Nab3 are both important for termination in living yeast cells. The findings herein describe an additional avenue by which these hnRNP-like proteins can polymerize on target transcripts. This process is independent of, but acts in concert with, the interactions of the proteins with RNA and RNA polymerase and extends the relationship of Nab3 as a functional orthologue of a higher eukaryotic hnRNP.

Reference Type
Journal Article
Authors
Loya TJ, O'Rourke TW, Reines D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference