Reference: Allen S, et al. (2013) The influence of protein folding on the copper affinities of trafficking and target sites. Dalton Trans 42(9):3233-9

Reference Help

Abstract


The relative influence of protein unfolding on the Cu(i) affinity of trafficking and target sites for copper has been determined. For the copper metallochaperone Atx1 from Synechocystis PCC 6803 (a cyanobacterium), Saccharomyces cerevisiae and humans unfolding in urea results in a decrease in the Cu(i) affinity from (4-5) ? 10(17) M(-1) to (1-3) ? 10(16) M(-1) at pH 7. The affinities of the unfolded Atx1s are similar to those for CXXC-containing peptides. Partial unfolding, due to the loop 5 His61Lys mutation in Synechocystis Atx1, gives rise to a more limited decrease in Cu(i) affinity. For the copper target protein plastocyanin from Synechocystis, chemical unfolding results in the Cu(i) affinity decreasing by 5-orders of magnitude. This differential influence of protein unfolding on Cu(i) affinity is due to a more complex copper site structure in the target protein, including numerous interactions of non-coordinating residues with ligating amino acids. This second-coordination sphere is much simpler in the Atx1s with the main interaction provided by the loop 5 residue that tunes the Cu(i) affinity by altering the pK(a) of the C-terminal Cys ligand of the CXXC motif. This interaction and others are absent in the unfolded Atx1s and the two Cys ligands have pK(a) values reminiscent of free thiols (>8) resulting in lowered Cu(i) affinities at pH 7. Residues close to the active site of the thiol-disulfide oxidoreductase thioredoxin appear to lower the Cu(i) affinity of its CXXC motif to 3.1 ? 10(15) M(-1) at pH 7, presumably to prevent copper binding in vivo. The structure of a copper site, including the number and relative position of ligands in the primary structure and the complexity of the second-coordination sphere, results in dramatically different effects of unfolding on Cu(i) affinity that has important implications for copper homeostasis.

Reference Type
Journal Article
Authors
Allen S, Badarau A, Dennison C
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference