Reference: Teixeira MD, et al. (2013) Molecular and morphological data support the existence of a sexual cycle in species of the genus Paracoccidioides. Eukaryot Cell 12(3):380-9

Reference Help

Abstract


The genus Paracoccidioides includes the thermodimorphic species Paracoccidioides brasiliensis and P. lutzii, both of which are etiologic agents of paracoccidioidomycosis, a systemic mycosis that affects humans in Latin America. Despite the common occurrence of a sexual stage among closely related fungi, this has not been observed with Paracoccidioides species, which have thus been considered asexual. Molecular evolutionary studies revealed recombination events within isolated populations of the genus Paracoccidioides, suggesting the possible existence of a sexual cycle. Comparative genomic analysis of all dimorphic fungi and Saccharomyces cerevisiae demonstrated the presence of conserved genes involved in sexual reproduction, including those encoding mating regulators such as MAT, pheromone receptors, pheromone-processing enzymes, and mating signaling regulators. The expression of sex-related genes in the yeast and mycelial phases of both Paracoccidioides species was also detected by real-time PCR, with nearly all of these genes being expressed preferentially in the filamentous form of the pathogens. In addition, the expression of sex-related genes was responsive to the putative presence of pheromone in the supernatants obtained from previous cocultures of strains of two different mating types. In vitro crossing of isolates of different mating types, discriminated by phylogenetic analysis of the a-box (MAT1-1) and the high-mobility-group (HMG) domain (MAT1-2), led to the identification of the formation of young ascocarps with constricted coiled hyphae related to the initial stage of mating. These genomic and morphological analyses strongly support the existence of a sexual cycle in species of the genus Paracoccidioides.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Teixeira MD, Theodoro RC, Derengowsky LD, Nicola AM, Bagagli E, Felipe MS
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference