Reference: Gao K, et al. (2013) CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica. Fungal Genet Biol 51:60-71

Reference Help

Abstract

Inhibitors of apoptosis proteins (IAPs) are critically important in the regulation of unicellular yeast and metazoan apoptosis. All IAPs contain one to three baculovirus IAP repeat (BIR) domains, which are essential for the anti-apoptotic activity of the IAPs. A homolog of IAPs, CpBir1, which bears two BIR domains, was recently identified from the chestnut blight fungus Cryphonectria parasitica genome. CpIAP was deleted by gene replacement, and the phenotypes of ?IAP were characterized. CpBir1 was significantly down-regulated by hypovirus infection but up-regulated by H(2)O(2). Similar to Saccharomyces cerevisiae Bir1p, the Cpbir1 mutant was sensitive to H(2)O(2), and constitutive overexpression of CpBir1 increased resistance to H(2)O(2). The Cpbir1 mutant also showed defects in aerial hyphal formation, colony growth, mycelial morphology, conidiogenesis, pigmentation, resistance to stress conditions and virulence. Genetic complementation with native Cpbir1 fully recovered all these defective phenotypes. The CpBir1-eGFP fusion protein was localized to the nucleus in juvenile cultures, while it was found in the cytoplasm in old cultures, suggesting that the localization pattern of CpBir1 may correlate with the process of anti-apoptosis. Increased accumulation of reactive oxygen species (ROS) in the Cpbir1 deletion mutant further supports the anti-apoptotic function of CpBir1. Among five selected vegetative compatible (vc) types of C. parasitica, Cpbir1 deletion was found to block virus from transferring between Cpbir1 mutants. However, hypovirus infected Cpbir1 mutants showed a similar ability to transmit virus to other virus-free isolates compared with the infected wild-type strain. In summary, Cpbir1 encodes an IAP CpBir1 that is down-regulated by hypovirus infection and required for conidiation, virulence and anti-apoptosis, as well as affects hypovirus transmission in chestnut blight fungus C. parasitica.

Reference Type
Journal Article
Authors
Gao K, Xiong Q, Xu J, Wang K, Wang K
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference