Reference: Chung BK and Lee DY (2012) Computational codon optimization of synthetic gene for protein expression. BMC Syst Biol 6:134

Reference Help

Abstract


ABSTRACT: BACKGROUND: The construction of customized nucleic acid sequences allows us to have greater flexibility in gene design for recombinant protein expression. Among the various parameters considered for such DNA sequence design, individual codon usage (ICU) has been implicated as one of the most crucial factors affecting mRNA translational efficiency. However, previous works have also reported the significant influence of codon pair usage, also known as codon context (CC), on the level of protein expression. RESULTS: In this study, we have developed novel computational procedures for evaluating the relative importance of optimizing ICU and CC for enhancing protein expression. By formulating appropriate mathematical expressions to quantify the ICU and CC fitness of a coding sequence, optimization procedures based on genetic algorithm were employed to maximize its ICU and/or CC fitness. Surprisingly, the in silico validation of the resultant optimized DNA sequences for Escherichia coli, Lactococcus lactis, Pichia pastoris and Saccharomyces cerevisiae suggests that CC is a more relevant design criterion than the commonly considered ICU. CONCLUSIONS: The proposed CC optimization framework can complement and enhance the capabilities of current gene design tools, with potential applications to heterologous protein production and even vaccine development in synthetic biotechnology.

Reference Type
Journal Article
Authors
Chung BK, Lee DY
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference