Take our Survey

Reference: Liu J, et al. (2013) Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress. J Appl Microbiol 114(2):482-91

Reference Help

Abstract

AIMS: Enhancement of the tolerance of Saccharomyces cerevisiae to monoterpenes has the potential to improve the de novo biosynthesis of these chemicals as well as the efficient utilization of monoterpene-containing citrus waste. The aims of the current work are to demonstrate the mechanisms by which ergosterol, an important component of cell membranes, protects S. cerevisiae from d-limonene stress and to provide some useful information for further metabolic engineering of the yeast. METHODS AND RESULTS: Saccharomyces cerevisiae cells were treated with a sublethal dose of d-limonene for 2 h, and then ergosterol was added to investigate the physiological responses of S. cerevisiae. In d-limonene-treated cells, the membrane fluidity, permeability and saturated fatty acid ratio increased, whereas the intracellular ergosterol concentration decreased sharply. Addition of ergosterol restored membrane and intracellular ergosterol to normal levels. Exogenous ergosterol triggered nearly all of the genes that encode the biosynthesis of ergosterol. CONCLUSIONS: In S. cerevisiae, the cell membrane is the target of d-limonene. Intracellular ergosterol availability is correlated with the d-limonene tolerance of the cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The results indicate that modification of the ergosterol biosynthesis pathway could be a promising strategy for constructing a robust yeast strain with enhanced tolerance.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Liu J, Zhu Y, Du G, Zhou J, Chen J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference