Take our Survey

Reference: Geeven G, et al. (2012) Comparison of targeted maximum likelihood and shrinkage estimators of parameters in gene networks.LID - 10.1515/1544-6115.1728 [doi]LID - /j/sagmb.2012.11.issue-5/1544-6115.1728/1544-6115.1728.xml [pii] Stat Appl Genet Mol Biol 11(5)

Reference Help

Abstract

Abstract Gene regulatory networks, in which edges between nodes describe interactions between transcription factors (TFs) and their target genes, model regulatory interactions that determine the cell-type and condition-specific expression of genes. Regression methods can be used to identify TF-target gene interactions from gene expression and DNA sequence data. The response variable, i.e. observed gene expression, is modeled as a function of many predictor variables simultaneously. In practice, it is generally not possible to select a single model that clearly achieves the best fit to the observed experimental data and the selected models typically contain overlapping sets of predictor variables. Moreover, parameters that represent the marginal effect of the individual predictors are not always present. In this paper, we use the statistical framework of estimation of variable importance to define variable importance as a parameter of interest and study two different estimators of this parameter in the context of gene regulatory networks. On yeast data we show that the resulting parameter has a biologically appealing interpretation. We apply the proposed methodology on mammalian gene expression data to gain insight into the temporal activity of TFs that underly gene expression changes in F11 cells in response to Forskolin stimulation.

Reference Type
Journal Article
Authors
Geeven G, van der Laan MJ, de Gunst MC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference