Take our Survey

Reference: Bessa D, et al. (2012) Improved gap repair cloning in yeast: treatment of the gapped vector with Taq DNA polymerase avoids vector self-ligation. Yeast 29(10):419-23

Reference Help

Abstract


Gap repair is a fast and efficient method for assembling recombinant DNA molecules in Saccharomyces cerevisiae. This method produces a circular DNA molecule by homologous recombination between two or more linear DNA fragments, one of which is typically a vector carrying replicative sequences and a selective marker. This technique avoids laborious and costly in vitro purification and ligation of DNA. The DNA repair machinery can also close and ligate the linear vector by mechanisms other than homologous recombination, resulting in an empty vector. The frequency of these unwanted events can be lowered by removing the 5'-phosphate groups using phosphatase, which is the standard method used for in vitro ligation. However, phosphatase treatment is less effective for gap repair cloning than for in vitro ligation, presumably due to the ability of the S. cerevisiae DNA repair machinery to efficiently repair the missing phosphate group to allow religation. We have developed a more efficient method to prevent vector religation, based on treatment of the vector fragment with Taq DNA polymerase and dATP. This procedure prevents vector recircularization almost completely, facilitating the screening for true recombinant clones.

Reference Type
Journal Article
Authors
Bessa D, Pereira F, Moreira R, Johansson B, Queiros O
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference