Take our Survey

Reference: Rybarsch M and Bornholdt S (2012) Binary threshold networks as a natural null model for biological networks. Phys Rev E Stat Nonlin Soft Matter Phys 86(2-2):026114

Reference Help

Abstract


Spin models of neural networks and genetic networks are considered elegant as they are accessible to statistical mechanics tools for spin glasses and magnetic systems. However, the conventional choice of variables in spin systems may cause problems in some models when parameter choices are unrealistic from a biological perspective. Obviously, this may limit the role of a model as a template model for biological systems. Perhaps less obviously, also ensembles of random networks are affected and may exhibit different critical properties. We consider here a prototypical network model that is biologically plausible in its local mechanisms. We study a discrete dynamical network with two characteristic properties: Nodes with binary states 0 and 1, and a modified threshold function with Theta_{0}(0)=0. We explore the critical properties of random networks of such nodes and find a critical connectivity K_{c}=2.0 with activity vanishing at the critical point. Finally, we observe that the present model allows a more natural implementation of recent models of budding yeast and fission yeast cell-cycle control networks.

Reference Type
Journal Article
Authors
Rybarsch M, Bornholdt S
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference