Reference: Ackermann J, et al. (2012) Reduction techniques for network validation in systems biology. J Theor Biol 315:71-80

Reference Help

Abstract

The rapidly increasing amount of experimental biological data enables the development of large and complex, often genome-scale models of molecular systems. The simulation and analysis of these computer models of metabolism, signal transduction, and gene regulation are standard applications in systems biology, but size and complexity of the networks limit the feasibility of many methods. Reduction of networks provides a hierarchical view of complex networks and gives insight knowledge into their coarse-grained structural properties. Although network reduction has been extensively studied in computer science, adaptation and exploration of these concepts are still lacking for the analysis of biochemical reaction systems. Using the Petri net formalism, we describe two local network structures, common transition pairs and minimal transition invariants. We apply these two structural elements for network reduction. The reduction preserves the CTI-property (covered by transition invariants), which is an important feature for completeness of biological models. We demonstrate this concept for a selection of metabolic networks including a benchmark network of Saccharomyces cerevisiae whose straightforward treatment is not yet feasible even on modern supercomputers.

Reference Type
Journal Article
Authors
Ackermann J, Einloft J, Nothen J, Koch I
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference