Take our Survey

Reference: Zheng DQ, et al. (2012) Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics 13(1):479

Reference Help

Abstract

ABSTRACT: BACKGROUND: Environmental stresses and inhibitors encountered by Saccharomyces cerevisiae strains are the main limiting factors in bioethanol fermentation. Strains with different genetic backgrounds usually show diverse stress tolerance responses. An understanding of the mechanisms underlying these phenotypic diversities within S. cerevisiae populations could guide the construction of strains with desired traits. RESULTS: We explored the genetic characteristics of the bioethanol S. cerevisiae strain YJS329 and elucidated how genetic variations in its genome were correlated with specified traits compared to similar traits in the S288c-derived strain, BYZ1. Karyotypic electrophoresis combined with array-comparative genomic hybridization indicated that YJS329 was a diploid strain with a relatively constant genome as a result of the fewer Ty elements and lack of structural polymorphisms between homologous chromosomes that it contained. By comparing the sequence with the S288c genome, a total of 64,998 SNPs, 7,093 indels and 11 unique genes were identified in the genome of YJS329-derived haploid strain YJSH1 through whole-genome sequencing. Transcription comparison using RNA-Seq identified which of the differentially expressed genes were the main contributors to the phenotypic differences between YJS329 and BYZ1. By combining the results obtained from the genome sequences and the transcriptions, we predicted how the SNPs, indels and chromosomal copy number variations may affect the mRNA expression profiles and phenotypes of the yeast strains. Furthermore, some genetic breeding strategies to improve the adaptabilities of YJS329 were designed and experimentally verified. CONCLUSIONS: Through comparative functional genomic analysis, we have provided some insights into the mechanisms underlying the specific traits of the bioenthanol strain YJS329. The work reported here has not only enriched the available genetic resources of yeast but has also indicated how functional genomic studies can be used to improve genetic breeding in yeast.FAU - Zheng, Dao-Qion.

Reference Type
Journal Article
Authors
Zheng DQ, Wang PM, Chen J, Zhang K, Liu TZ, Wu XC, Li YD, Zhao YH
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference