Reference: Frey AG and Eide DJ (2012) Zinc-responsive coactivator recruitment by the yeast Zap1 transcription factor. Microbiologyopen 1(2):105-14

Reference Help

Abstract


The zinc-responsive Zap1 transcription factor of Saccharomyces cerevisiae controls many genes involved in zinc homeostasis. Zap1 has two activation domains, AD1 and AD2, which are independently regulated by zinc. While AD1 can fully activate most Zap1 target genes, AD2 is active only on a subset of those genes. One hypothesis explaining this promoter specificity was that AD1 and AD2 recruit different coactivators. To address this question, we carried out a genetic screen to identify coactivator complexes that are required for Zap1-mediated activation. SWI/SNF, SAGA, and Mediator complexes were implicated as playing major roles in Zap1 activation. Consistent with this conclusion, we found that these three complexes are recruited to Zap1 target promoters in a zinc-responsive and Zap1-dependent manner. Coactivator recruitment was highly interdependent such that mutations disrupting SAGA impaired recruitment of SWI/SNF and vice versa. Optimal Mediator recruitment was dependent on both SAGA and SWI/SNF. A comparison of the coactivators recruited by AD1 and AD2 found no obvious differences suggesting that recruitment of different coactivators is not likely the mechanism of AD specificity. Rather, our results suggest that AD2 recruits coactivators less effectively than AD1 and is therefore only functional on some promoters.

Reference Type
Journal Article
Authors
Frey AG, Eide DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference