Reference: Nielsen I, et al. (2012) Studying repair of a single protein-bound nick in vivo using the flp-nick system. Methods Mol Biol 920:393-415

Reference Help

Abstract

The Flp-nick system is a simple in vivo system developed for studying the cellular responses to a protein-bound nick at a single genomic site in the budding yeast Saccharomyces cerevisiae. The Flp-nick system takes advantage of a mutant Flp recombinase that can introduce a nick at a specific Flp recombinase recognition target (FRT) site, which has been integrated into the yeast genome. Upon cleavage at the FRT site, the Flp mutant becomes covalently linked to the 3' DNA end at the nick in an irreversible manner, as the mutant fails to accomplish the required religation process. Thus, the established damage mimics a stabilized topoisomerase I-DNA cleavage complex. DNA topoisomerases are ubiquitous enzymes that relieve topological stress in the DNA arising during DNA replication or transcription. During this process, they make transient enzyme-DNA cleavage complexes, which normally are reversed by a rapid ligation step. However, aberrant long-lived enzyme-DNA complexes may occur frequently due to either endogenous or exogenous damage, and the cellular repair machinery therefore needs to be able to eliminate this type of damage. This chapter describes how to establish the Flp-nick system in S. cerevisiae, how to detect FlpH305L at the FRT site using a modified chromatin immunoprecipitation assay where formaldehyde fixation is omitted, and how to monitor nicking at the FRT site by alkaline denaturing gel analysis.

Reference Type
Journal Article
Authors
Nielsen I, Andersen AH, Bjergbaek L
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference