Reference: Cole HA, et al. (2012) Genome-wide mapping of nucleosomes in yeast using paired-end sequencing. Methods Enzymol 513:145-68

Reference Help

Abstract


The DNA of eukaryotic cells is packaged into chromatin by histone proteins, which play a central role in regulating access to genetic information. The nucleosome core is the basic structural unit of chromatin: it is composed of an octamer of the four major core histones (two molecules each of H2A, H2B, H3, and H4), around which are wrapped approximately 1.75 negative superhelical turns of DNA, a total of 145-147bp. Nucleosome cores are regularly spaced along the DNA in vivo, separated by linker DNA. Nucleosomes are compact structures capable of blocking access to the DNA that they contain. For example, they may prevent the binding of transcription factors to their cognate sites. It is therefore very important to obtain quantitative information on the positions of nucleosomes with respect to regulatory regions in vivo. The advent of high-throughput sequencing methods has revolutionized this field. We describe the use and advantages of paired-end sequencing to map nucleosomal DNA obtained by micrococcal nuclease digestion of budding yeast nuclei. This approach provides high-quality genome-wide nucleosome occupancy and position maps.CI - Copyright (c) 2012 Elsevier Inc. All rights reserved.FAU - Cole, Hope.

Reference Type
Journal Article
Authors
Cole HA, Howard BH, Clark DJ
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference