Take our Survey

Reference: Guy MP, et al. (2012) Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop. RNA 18(10):1921-33

Reference Help

Abstract


Post-transcriptional modification of the tRNA anticodon loop is critical for translation. Yeast Trm7 is required for 2'-O-methylation of C(32) and N(34) of tRNA(Phe), tRNA(Trp), and tRNA(Leu(UAA)) to form Cm(32) and Nm(34), and trm7-? mutants have severe growth and translation defects, but the reasons for these defects are not known. We show here that overproduction of tRNA(Phe) suppresses the growth defect of trm7-? mutants, suggesting that the crucial biological role of Trm7 is the modification of tRNA(Phe). We also provide in vivo and in vitro evidence that Trm7 interacts with ORF YMR259c (now named Trm732) for 2'-O-methylation of C(32), and with Rtt10 (named Trm734) for 2'-O-methylation of N(34) of substrate tRNAs and provide evidence for a complex circuitry of anticodon loop modification of tRNA(Phe), in which formation of Cm(32) and Gm(34) drives modification of m(1)G(37) (1-methylguanosine) to yW (wyebutosine). Further genetic analysis shows that the slow growth of trm7-? mutants is due to the lack of both Cm(32) and Nm(34), and the accompanying loss of yW, because trm732-? trm734-? mutants phenocopy trm7-? mutants, whereas each single mutant is healthy; nonetheless, TRM732 and TRM734 each have distinct roles, since mutations in these genes have different genetic interactions with trm1-? mutants, which lack m(2,2)G(26) in their tRNAs. We speculate that 2'-O-methylation of the anticodon loop may be important throughout eukaryotes because of the widespread conservation of Trm7, Trm732, and Trm734 proteins, and the corresponding modifications, and because the putative human TRM7 ortholog FTSJ1 is implicated in nonsyndromic X-linked mental retardation.

Reference Type
Journal Article
Authors
Guy MP, Podyma BM, Preston MA, Shaheen HH, Krivos KL, Limbach PA, Hopper AK, Phizicky EM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference