Take our Survey

Reference: Hutchison EA, et al. (2012) Diversification of a protein kinase cascade: IME-2 is involved in nonself recognition and programmed cell death in Neurospora crassa. Genetics 192(2):467-82

Reference Help

Abstract


Kinase cascades and the modification of proteins by phosphorylation are major mechanisms for cell signaling and communication, and evolution of these signaling pathways can contribute to new developmental or environmental response pathways. The Saccharomyces cerevisiae kinase Ime2 has been well characterized for its role in meiosis. However, recent studies have revealed alternative functions for Ime2 in both S. cerevisiae and other fungi. In the filamentous fungus Neurospora crassa, the IME2 homolog (ime-2) is not required for meiosis. Here we determine that ime-2 interacts genetically with a transcription factor vib-1 during nonself recognition and programmed cell death (PCD). Mutations in vib-1 (?vib-1) suppress PCD due to nonself recognition events; however, a ?vib-1 ?ime-2 mutant restored wild-type levels of cell death. A role for ime-2 in the post-translational processing and localization of a mitochondrial matrix protein was identified, which may implicate mitochondria in N. crassa nonself recognition and PCD. Further, ?vib-1 strains do not produce extracellular proteases, but protease secretion reverted to near wild-type levels in a ?vib-1 ?ime-2 strain. Mass spectrometry analysis revealed that the VIB-1 protein is phosphorylated at several sites, including a site that matches the IME-2 consensus. The genetic and biochemical data for ime-2 and vib-1 indicate that IME-2 is a negative regulator of VIB-1 and suggest parallel negative regulation by IME-2 of a cell death pathway in N. crassa that functions in concert with the VIB-1 cell death pathway. Thus, IME2 kinase function has evolved following the divergence of S. cerevisiae and N. crassa and provides insight into the evolution of kinases and their regulatory targets.

Reference Type
Journal Article
Authors
Hutchison EA, Bueche JA, Glass NL
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference