Take our Survey

Reference: Hendrickx DM, et al. (2012) Inferring differences in the distribution of reaction rates across conditions. Mol Biosyst 8(9):2415-23

Reference Help

Abstract

Elucidating changes in the distribution of reaction rates in metabolic pathways under different conditions is a central challenge in systems biology. Here we present a method for inferring regulation mechanisms responsible for changes in the distribution of reaction rates across conditions from correlations in time-resolved data. A reversal of correlations between conditions reveals information about regulation mechanisms. With the use of a small in silico hypothetical network, based on only the topology and directionality of a known pathway, several regulation scenarios can be formulated. Confronting these scenarios with experimental data results in a short list of possible pathway regulation mechanisms associated with the reversal of correlations between conditions. This procedure allows for the formulation of regulation scenarios without detailed prior knowledge of kinetics and for the inference of reaction rate changes without rate information. The method was applied to experimental time-resolved metabolomics data from multiple short-term perturbation-response experiments in S. cerevisiae across aerobic and anaerobic conditions. The method's output was validated against a detailed kinetic model of glycolysis in S. cerevisiae, which showed that the method can indeed infer the correct regulation scenario.

Reference Type
Journal Article
Authors
Hendrickx DM, Hoefsloot HC, Hendriks MM, Vis DJ, Canelas AB, Teusink B, Smilde AK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference