Take our Survey

Reference: Ferreira RT, et al. (2012) Arsenic stress elicits cytosolic Ca(2+) bursts and Crz1 activation in Saccharomyces cerevisiae. Microbiology 158(Pt 9):2293-302

Reference Help

Abstract


Although arsenic is notoriously poisonous to life, its utilization in therapeutics brings many benefits to human health, so it is therefore essential to discover the molecular mechanisms underlying arsenic stress responses in eukaryotic cells. Aiming to determine the contribution of Ca(2+) signalling pathways to arsenic stress responses, we took advantage of the use of Saccharomyces cerevisiae as a model organism. Here we show that Ca(2+) enhances the tolerance of the wild-type and arsenic-sensitive yap1 strains to arsenic stress in a Crz1-dependent manner, thus providing the first evidence that Ca(2+) signalling cascades are involved in arsenic stress responses. Moreover, our results indicate that arsenic shock elicits a cytosolic Ca(2+) burst in these strains, without the addition of exogenous Ca(2+) sources, strongly supporting the notion that Ca(2+) homeostasis is disrupted by arsenic stress. In response to an arsenite-induced increase of Ca(2+) in the cytosol, Crz1 is dephosphorylated and translocated to the nucleus, and stimulates CDRE-driven expression of the lacZ reporter gene in a Cnb1-dependent manner. The activation of Crz1 by arsenite culminates in the induction of the endogenous genes PMR1, PMC1 and GSC2. Taken together, these data establish that activation of Ca(2+) signalling pathways and the downstream activation of the Crz1 transcription factor contribute to arsenic tolerance in the eukaryotic model organism S. cerevisiae.

Reference Type
Journal Article
Authors
Ferreira RT, Courelas Silva AR, Pimentel C, Bastita-Nascimento L, Rodrigues-Pousada C, Menezes RA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference