Reference: Fokkens L, et al. (2012) Gene duplications contribute to the overrepresentation of interactions between proteins of a similar age. BMC Evol Biol 12(1):99

Reference Help

Abstract


ABSTRACT: BACKGROUND: The study of biological networks and how they have evolved is fundamental to our understanding of the cell. By investigating how proteins of different ages are connected in the protein interaction network, one can infer how that network has expanded in evolution, without the need for explicit reconstruction of ancestral networks. Studies that implement this approach show that proteins are often connected to proteins of a similar age, suggesting a simultaneous emergence of interacting proteins. There are several theories explaining this phenomenon, but despite the importance of gene duplication in genome evolution, none consider protein family dynamics as a contributing factor. RESULTS: In an S. cerevisiae protein interaction network we investigate to what extent edges that arise from duplication events contribute to the observed tendency to interact with proteins of a similar age. We find that part of this tendency is explained by interactions between paralogs. Age is usually defined on the level of protein families, rather than individual proteins, hence paralogs have the same age. The major contribution however, is from interaction partners that are shared between paralogs. These interactions have most likely been conserved after a duplication event. To investigate to what extent a nearly neutral process of network growth can explain these results, we adjust a well-studied network growth model to incorporate protein families. Our model shows that the number of edges between paralogs can be amplified by subsequent duplication events, thus explaining the overrepresentation of interparalog edges in the data. The fact that interaction partners shared by paralogs are often of the same age as the paralogs does not arise naturally from our model and needs further investigation. CONCLUSION: We amend previous theories that explain why proteins of a similar age prefer to interact by demonstrating that this observation can be partially explained by gene duplication events. There is an ongoing debate on whether the protein interaction network is predominantly shaped by duplication and subfunctionalization or whether network rewiring is most important. Our analyses of S. cerevisiae protein interaction networks demonstrate that duplications have influenced at least one property of the protein interaction network: how proteins of different ages are connected.

Reference Type
Journal Article
Authors
Fokkens L, Hogeweg P, Snel B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference