Take our Survey

Reference: Khmelinskii A, et al. (2012) Tandem fluorescent protein timers for in vivo analysis of protein dynamics.LID - 10.1038/nbt.2281 [doi] Nat Biotechnol

Reference Help

Abstract

The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells. We fuse tFTs to proteins in yeast to study the longevity, segregation and inheritance of cellular components and the mobility of proteins between subcellular compartments; to measure protein degradation kinetics without the need for time-course measurements; and to conduct high-throughput screens for regulators of protein turnover. Our experiments reveal the stable nature and asymmetric inheritance of nuclear pore complexes and identify regulators of N-end rule-mediated protein degradation.Systematic monitoring of proteome dynamics would require simultaneous measurement of protein turnover and subcellular trafficking at the single-cell and population scales. The importance of protein turnover was introduced in 1942 by Schonheimer, who noted that "all constituents of living matter, whether functional or structural, of simple or of complex constitution, are in a steady state of rapid flux". Protein homeostasis is now understood as a balance between protein synthesis, through transcription and translation, and protein degradation, through processes such as proteasomal and lysosomal degradation, tuned in response to intrinsic and extrinsic inputs. Alterations in protein turnover are observed in aging organisms and underlie various diseases. Deregulated degradation of cell cycle control proteins such as the p53 tumor suppressor plays a critical role in many forms of human cancers. Abnormal trafficking and degradation of a mutant form of a chloride ion channel causes cystic fibrosis. Moreover, accumulation of specific proteins is linked to neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases. Therefore, understanding protein turnover and mobility could provide new strategies for targeted clinical interference to treat such diseases.

Reference Type
Journal Article
Authors
Khmelinskii A, Keller PJ, Bartosik A, Meurer M, Barry JD, Mardin BR, Kaufmann A, Trautmann S, Wachsmuth M, Pereira G, ... Show all
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference