Reference: Wang J, et al. (2012) Identifying protein complexes from interactome based on essential proteins and local fitness method. IEEE Trans Nanobioscience 11(4):324-35

Reference Help

Abstract

High-throughput experimental technologies, along with computational predictions, have promoted the emergence of large-scale interactome for numerous organisms. Identification of protein complexes from these interactome networks is crucial to understand principles of cellular organization and predict protein functions. Protein complexes are generally considered as dense subgraphs. However, the real protein complexes do not always have highly connected topologies. In this paper, a novel protein complex identifying method, named EPOF, is proposed, using essential proteins and the local metric of vertex fitness. In EPOF, cliques in the subnetwork which is consisted by the essential proteins are firstly considered as seeds, which are ordered according to their size and the number of their neighbors. A protein complex is extended from a seed based on the evaluation of its neighbors' fitness value. Then, the similar procedure is applied to the cliques identified in the subnetwork which is consisted by the proteins which is not clustered in the first step. When EPOF identifies complexes by expanding essential protein cliques, the essential proteins have higher priority and lower threshold. When it identifies complexes by expanding nonessential protein cliques, the nonessential proteins have higher priority and lower threshold. Finally, the last step, we output the identified complexes set. The proposed algorithm EPOF is applied to the unweighted and weighted interaction networks of S. cerevisiae and detects many well known protein complexes. We compare the performances of EPOF to other ten previous algorithms, including EAGLE, NFC, MCODE, DPClus, IPCA, CPM, MCL, CMC, SPICi, and Core-Attachment. Experimental results show that EPOF outperforms other previous competing algorithms in terms of matching with known complexes, sensitivity, specificity, f-measure, function enrichment and accuracy. The program and related files available on https://github.com/gangchen/epof.

Reference Type
Journal Article
Authors
Wang J, Chen G, Liu B, Li M, Pan Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference