Reference: Chafekar SM, et al. (2012) Pharmacological tuning of heat shock protein 70 modulates polyglutamine toxicity and aggregation. ACS Chem Biol 7(9):1556-64

Reference Help

Abstract

Nine neurodegenerative disorders are caused by the abnormal expansion of polyglutamine (polyQ) regions within distinct proteins. Genetic and biochemical evidence has documented that the molecular chaperone, heat shock protein 70 (Hsp70), modulates polyQ toxicity and aggregation, yet it remains unclear how Hsp70 might be used as a potential therapeutic target in polyQ-related diseases. We have utilized a pair of membrane-permeable compounds that tune the activity of Hsp70 by either stimulating or by inhibiting its ATPase functions. Using these two pharmacological agents in both yeast and PC12 cell models of polyQ aggregation and toxicity, we were surprised to find that stimulating Hsp70 solubilized polyQ conformers and simultaneously exacerbated polyQ-mediated toxicity. By contrast, inhibiting Hsp70 ATPase activity protected against polyQ toxicity and promoted aggregation. These findings clarify the role of Hsp70 as a possible drug target in polyQ disorders and suggest that Hsp70 uses ATP hydrolysis to help partition polyQ proteins into structures with varying levels of proteotoxicity. Our results thus support an emerging concept in which certain kinds of polyQ aggregates may be protective, while more soluble polyQ species are toxic.

Reference Type
Journal Article
Authors
Chafekar SM, Wisen S, Thompson AD, Echeverria A, Walter GM, Evans CG, Makley LN, Gestwicki JE, Duennwald ML
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference