Reference: Jansen RP and Niessing D (2012) Assembly of mRNA-protein complexes for directional mRNA transport in eukaryotes--an overview. Curr Protein Pept Sci 13(4):284-93

Reference Help

Abstract


At all steps from transcription to translation, RNA-binding proteins play important roles in determining mRNA function. Initially it was believed that for the vast majority of transcripts the role of RNA-binding proteins is limited to general functions such as splicing and translation. However, work from recent years showed that members of this class of proteins also recognize several mRNAs via cis-acting elements for their incorporation into large motor-containing particles. These particles are transported to distant subcellular sites, where they become subsequently translated. This process, called mRNA localization, occurs along microtubules or actin filaments, and involves kinesins, dyneins, as well as myosins. Although mRNA localization has been detected in a large number of organisms from fungi to humans, the underlying molecular machineries are not well understood. In this review we will outline general principles of mRNA localization and highlight three examples, for which a comparably large body of information is available. The first example is She2p/She3p-dependent localization of ASH1 mRNA in budding yeast. It is particularly well suited to highlight the interdependence between different steps of mRNA localization. The second example is Staufen-dependent localization of oskar mRNA in the Drosophila embryo, for which the importance of nuclear events for cytoplasmic localization and translational control has been clearly demonstrated. The third example summarizes Egalitarian/Bicaudal D-dependent mRNA transport events in the oocyte and embryo of Drosophila. We will highlight general themes and differences, point to similarities in other model systems, and raise open questions that might be answered in the coming years.

Reference Type
Journal Article
Authors
Jansen RP, Niessing D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference