Reference: Liu J and Barrientos A (2013) Transcriptional regulation of yeast oxidative phosphorylation hypoxic genes by oxidative stress. Antioxid Redox Signal 19(16):1916-27

Reference Help

Abstract

Abstract Aims: Mitochondrial cytochrome c oxidase (COX) subunit 5 and cytochrome c (Cyc) exist in two isoforms, transcriptionally regulated by oxygen in yeast. The gene pair COX5a/CYC1 encodes the normoxic isoforms (Cox5a and iso1-Cyc) and the gene pair COX5b/CYC7 encodes the hypoxic isoforms (Cox5b and iso2-Cyc). Rox1 is a transcriptional repressor of COX5b/CYC7 in normoxia. COX5b is additionally repressed by Ord1. Here, we investigated whether these pathways respond to environmental and mitochondria-generated oxidative stress. Results: The superoxide inducer menadione triggered a significant de-repression of COX5b and CYC7. Hydrogen peroxide elicited milder de-repression effects that were enhanced in the absence of Yap1, a key determinant in oxidative stress resistance. COX5b/CYC7 was also de-repressed in wild-type cells treated with antimycin A, a mitochondrial bc1 complex inhibitor that increases superoxide production. Exposure to menadione and H2O2 enhanced both, Hap1-independent expression of ROX1 and Rox1 steady-state levels without affecting Ord1. However, oxidative stress lowered the occupancy of Rox1 on COX5b and CYC7 promoters, thus inducing their de-repression. Innovation: Reactive oxygen species (ROS)-induced hypoxic gene expression in normoxia involves the oxygen-responding Rox1 transcriptional machinery. Contrary to what occurs in hypoxia, ROS enhances Rox1 accumulation. However, its transcriptional repression capacity is compromised. Conclusion: ROS induce expression of hypoxic COX5b and CYC7 genes through an Ord1- and Hap1-independent mechanism that promotes the release of Rox1 from or limits the access of Rox1 to its hypoxic gene promoter targets. Antioxid. Redox Signal. 19, 1916-1927.

Reference Type
Journal Article
Authors
Liu J, Barrientos A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference