Reference: Vinh NX, et al. (2012) Issues impacting genetic network reverse engineering algorithm validation using small networks. Biochim Biophys Acta 1824(12):1434-41

Reference Help

Abstract

Genetic network reverse engineering has been an area of intensive research within the systems biology community during the last decade. With many techniques currently available, the task of validating them and choosing the best one for a certain problem is a complex issue. Current practice has been to validate an approach on in-silico synthetic data sets, and, wherever possible, on real data sets with known ground-truth. In this study, we highlight a major issue that the validation of reverse engineering algorithms on small benchmark networks very often results in networks which are not statistically better than a randomly picked network. Another important issue highlighted is that with short time series, a small variation in the pre-processing procedure might yield large differences in the inferred networks. To demonstrate these issues, we have selected as our case study the IRMA in-vivo synthetic yeast network recently published in Cell. Using Fisher's exact test, we show that many results reported in the literature on reverse-engineering this network are not significantly better than random. The discussion is further extended to some other networks commonly used for validation purposes in the literature. The results presented in this study emphasize that studies carried out using small genetic networks are likely to be trivial, making it imperative that larger real networks be used for validating and benchmarking purposes. If smaller networks are considered, then the results should be interpreted carefully to avoid over confidence. This article is part of a Special Issue entitled: Computational Methods for Protein Interaction and Structural Prediction.

Reference Type
Journal Article
Authors
Vinh NX, Chetty M, Coppel R, Wangikar PP
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference