Take our Survey

Reference: Surratt CK, et al. (1990) Construction and processing of transfer RNA precursor models. J Biol Chem 265(36):22506-12

Reference Help

Abstract

Several "dimeric" tRNA molecules were constructed as potential substrates for ribonuclease P (RNase P) and for M1 RNA, the catalytic subunit of RNase P. Construction was affected by the T4 RNA ligase-mediated coupling of a mature Escherichia coli tRNA (acceptor substrate) and nucleotides 1-36 of yeast tRNAPhe (donor substrate), followed by annealing of the 3'-half of yeast tRNAPhe (nucleotides 38-76). E. coli RNase P and M1 RNA were both found to cleave the dimeric tRNA precursor model constructed from E. coli tRNAPhe (5'-tRNA) and yeast tRNAPhe (3'-tRNA) in a reaction that was dependent on the presence of the annealed 3'-half molecule derived from yeast tRNAPhe, or on some conformation imposed by the presence of this species; the product had the same mobility as authentic E. coli tRNAPhe on a polyacrylamide gel. By utilizing tRNA precursor models radiolabeled at phosphodiesters immediately preceding or following the putative site of processing, cleavage of the substrate by both M1 RNA and the holoenzyme was demonstrated to occur at the expected phosphate ester linkage. The results obtained here suggest that the endonucleolytic separation of two tRNAs by RNase P is dependent on one or more structural features in the 3'-half of the 3'-tRNA, and thus are consistent with the report of McClain et al. (McClain, W. H., Guerrier-Takada, C., and Altman, S. (1987) Science 238, 527-530) that identifies the T stem and loop as a possible recognition site.

Reference Type
Journal Article
Authors
Surratt CK, Lesnikowski Z, Schifman AL, Schmidt FJ, Hecht SM
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference