Take our Survey

Reference: Cottrell D, et al. (2012) Stochastic branching-diffusion models for gene expression. Proc Natl Acad Sci U S A 109(25):9699-704

Reference Help

Abstract

A challenge to both understanding and modeling biochemical networks is integrating the effects of diffusion and stochasticity. Here, we use the theory of branching processes to give exact analytical expressions for the mean and variance of protein numbers as a function of time and position in a spatial version of an established model of gene expression. We show that both the mean and the magnitude of fluctuations are determined by the protein's Kuramoto length--the typical distance a protein diffuses over its lifetime--and find that the covariance between local concentrations of proteins often increases if there are substantial bursts of synthesis during translation. Using high-throughput data, we estimate that the Kuramoto length of cytoplasmic proteins in budding yeast to be an order of magnitude larger than the cell diameter, implying that many such proteins should have an approximately uniform concentration. For constitutively expressed proteins that live substantially longer than their mRNA, we give an exact expression for the deviation of their local fluctuations from Poisson fluctuations. If the Kuramoto length of mRNA is sufficiently small, we predict that such local fluctuations become approximately Poisson in bacteria in much of the cell, unless translational bursting is exceptionally strong. Our results therefore demonstrate that diffusion can act to both increase and decrease the complexity of fluctuations in biochemical networks.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cottrell D, Swain PS, Tupper PF
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference