Take our Survey

Reference: Ohdate T and Inoue Y (2012) Involvement of glutathione peroxidase 1 in growth and peroxisome formation in Saccharomyces cerevisiae in oleic acid medium. Biochim Biophys Acta 1821(9):1295-305

Reference Help

Abstract


Saccharomyces cerevisiae is able to use some fatty acids, such as oleic acid, as a sole source of carbon. ?-oxidation, which occurs in a single membrane-enveloped organelle or peroxisome, is responsible for the assimilation of fatty acids. In S. cerevisiae, ?-oxidation occurs only in peroxisomes, and H(2)O(2) is generated during this fatty acid-metabolizing pathway. S. cerevisiae has three GPX genes (GPX1, GPX2, and GPX3) encoding atypical 2-Cys peroxiredoxins. Here we show that expression of GPX1 was induced in medium containing oleic acid as a carbon source in an Msn2/Msn4-dependent manner. We found that Gpx1 was located in the peroxisomal matrix. The peroxisomal Gpx1 showed peroxidase activity using thioredoxin or glutathione as a reducing power. Peroxisome biogenesis was induced when cells were cultured with oleic acid. Peroxisome biogenesis was impaired in gpx1? cells, and subsequently, the growth of gpx1? cells was lowered in oleic acid-containing medium. Gpx1 contains six cysteine residues. Of the cysteine-substituted mutants of Gpx1, Gpx1(C36S) was not able to restore growth and peroxisome formation in oleic acid-containing medium, therefore, redox regulation of Gpx1 seems to be involved in the mechanism of peroxisome formation.

Reference Type
Journal Article
Authors
Ohdate T, Inoue Y
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference