Reference: Ayadi W, et al. (2012) Pattern-driven neighborhood search for biclustering of microarray data. BMC Bioinformatics 13 Suppl 7:S11

Reference Help

Abstract

BACKGROUND: Biclustering aims at finding subgroups of genes that show highly correlated behaviors across a subgroup of conditions. Biclustering is a very useful tool for mining microarray data and has various practical applications. From a computational point of view, biclustering is a highly combinatorial search problem and can be solved with optimization methods. RESULTS: We describe a stochastic pattern-driven neighborhood search algorithm for the biclustering problem. Starting from an initial bicluster, the proposed method improves progressively the quality of the bicluster by adjusting some genes and conditions. The adjustments are based on the quality of each gene and condition with respect to the bicluster and the initial data matrix. The performance of the method was evaluated on two well-known microarray datasets (Yeast cell cycle and Saccharomyces cerevisiae), showing that it is able to obtain statistically and biologically significant biclusters. The proposed method was also compared with six reference methods from the literature. CONCLUSIONS: The proposed method is computationally fast and can be applied to discover significant biclusters. It can also used to effectively improve the quality of existing biclusters provided by other biclustering methods.

Reference Type
Journal Article
Authors
Ayadi W, Elloumi M, Hao JK
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference