Reference: Karagiannis J (2012) Decoding the Informational Properties of the RNA Polymerase II Carboxy Terminal Domain. BMC Res Notes 5(1):241

Reference Help

Abstract


ABSTRACT: BACKGROUND: The largest sub-unit of RNA polymerase II, Rpb1p, has long been known to be subject to post-translational modifications that influence various aspects of pre-mRNA processing. However, the portion of the Rpb1p molecule subject to these modifications - the carboxy-terminal domain or CTD - remains the subject of much fascination. Intriguingly, the CTD possesses a unique repetitive structure consisting of multiple repeats of the heptapeptide sequence, Y1S2P3T4S5P6S7. While these repeats are critical for viability, they are not required for basal transcriptional activity in vitro. This suggests that - even though the CTD is not catalytically essential - it must perform other critical functions in eukaryotes. Presentation of the Hypothesis By formally applying the long-standing mathematical principles of information theory, I explore the hypothesis that complex post-translational modifications of the CTD represent a means for the dynamic "programming" of Rpb1p and thus for the discrete modulation of the expression of specific gene subsets in eukaryotes. Testing the Hypothesis Empirical means for testing the informational capacity and regulatory potential of the CTD - based on simple genetic analysis in yeast model systems - are put forward and discussed. Implications of the Hypothesis These ideas imply that the controlled manipulation of CTD effectors could be used to "program" the CTD and thus to manipulate biological processes in eukaryotes in a definable manner.FAU - Karagiannis, Ji.

Reference Type
Journal Article
Authors
Karagiannis J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference