Reference: Aguilar D and Oliva B (2012) Functional and topological characterization of transcriptional cooperativity in yeast. BMC Res Notes 5(1):227

Reference Help

Abstract


ABSTRACT: BACKGROUND: Many cellular programs are regulated through the integration of specific transcriptional signals originated from external stimuli, being cooperation between transcription factors a key feature in this process. In this work, we studied how transcriptional cooperativity in yeast is aimed at integrating different regulatory inputs rather than controlling particular cellular functions from a organizational, evolutionary and functional point of view. FINDINGS: Our results showed that cooperative transcription factor pairs co-evolve and are essential for the life of the cell. When organized into a layered regulatory network, we observed that cooperative transcription factors were preferentially placed in the middle layers, which highlights a role in regulatory signal integration. We also observed significant co-activity and co-evolution between members of the same cooperative pairs, but a lack of common co-expression profile. CONCLUSIONS: Our results suggest that transcriptional cooperativity has a specific role within the regulatory control scheme of the cell, focused in the amplification and integration of cellular signals rather than control of particular cellular functions. This information can be used for better characterization of regulatory interactions between transcription factors, aimed at determining the spatial and temporal control of gene expression.FAU - Aguilar, Danie.

Reference Type
Journal Article
Authors
Aguilar D, Oliva B
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference