Take our Survey

Reference: Rost HL, et al. (2012) A computational tool to detect and avoid redundancy in selected reaction monitoring. Mol Cell Proteomics 11(8):540-9

Reference Help

Abstract


Selected reaction monitoring (SRM), also called multiple reaction monitoring, has become an invaluable tool for targeted quantitative proteomic analyses, but its application can be compromised by nonoptimal selection of transitions. In particular, complex backgrounds may cause ambiguities in SRM measurement results because peptides with interfering transitions similar to those of the target peptide may be present in the sample. Here, we developed a computer program, the SRMCollider, that calculates nonredundant theoretical SRM assays, also known as unique ion signatures (UIS), for a given proteomic background. We show theoretically that UIS of three transitions suffice to conclusively identify 90% of all yeast peptides and 85% of all human peptides. Using predicted retention times, the SRMCollider also simulates time-scheduled SRM acquisition, which reduces the number of interferences to consider and leads to fewer transitions necessary to construct an assay. By integrating experimental fragment ion intensities from large scale proteome synthesis efforts (SRMAtlas) with the information content-based UIS, we combine two orthogonal approaches to create high quality SRM assays ready to be deployed. We provide a user friendly, open source implementation of an algorithm to calculate UIS of any order that can be accessed online at http://www.srmcollider.org to find interfering transitions. Finally, our tool can also simulate the specificity of novel data-independent MS acquisition methods in Q1-Q3 space. This allows us to predict parameters for these methods that deliver a specificity comparable with that of SRM. Using SRM interference information in addition to other sources of information can increase the confidence in an SRM measurement. We expect that the consideration of information content will become a standard step in SRM assay design and analysis, facilitated by the SRMCollider.

Reference Type
Journal Article
Authors
Rost HL, Malmstrom L, Aebersold R
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference