Take our Survey

Reference: James K, et al. (2012) Is newer better?--evaluating the effects of data curation on integrated analyses in Saccharomyces cerevisiae. Integr Biol (Camb) 4(7):715-27

Reference Help

Abstract

Recent high-throughput experiments have produced a wealth of heterogeneous datasets, each of which provides information about different aspects of the cell. Consequently, integration of diverse data types is essential in order to address many biological questions. The quality of any integrated analysis system is dependent upon the quality of its component data, and upon the Gold Standard data used to evaluate it. It is commonly assumed that the quality of data improves as databases grow and change, particularly for manually curated databases. However, the validity of this assumption can be questioned, given the constant changes in the data coupled with the high level of noise associated with high-throughput experimental techniques. One of the most powerful approaches to data integration is the use of Probabilistic Functional Integrated Networks (PFINs). Here, we systematically analyse the changes in four highly-curated and widely-used online databases and evaluate the extent to which these changes affect the protein function prediction performance of PFINs in the yeast Saccharomyces cerevisiae. We find that the global trend in network performance improves over time. Where individual areas of biology are concerned, however, the most recent files do not always produce the best results. Individual datasets have unique biases towards different biological processes and by selecting and integrating relevant datasets performance can be improved. When using any type of integrated system to answer a specific biological question careful selection of raw data and Gold Standard is vital, since the most recent data may not be the most appropriate.

Reference Type
Journal Article
Authors
James K, Wipat A, Hallinan J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference