Reference: Moser C and Gupta M (2012) A Generalized Hidden Markov Model for Determining Sequence-based Predictors of Nucleosome Positioning.LID - 10.2202/1544-6115.1707 [doi]LID - /j/sagmb.2012.11.issue-2/1544-6115.1707/1544-6115.1707.xml [pii] Stat Appl Genet Mol Biol 11(2)

Reference Help

Abstract

Chromatin structure, in terms of positioning of nucleosomes and nucleosome-free regions in the DNA, has been found to have an immense impact on various cell functions and processes, ranging from transcriptional regulation to growth and development. In spite of numerous experimental and computational approaches being developed in the past few years to determine the intrinsic relationship between chromatin structure (nucleosome positioning) and DNA sequence features, there is yet no universally accurate approach to predict nucleosome positioning from the underlying DNA sequence alone. We here propose an alternative approach to predicting nucleosome positioning from sequence, making use of characteristic sequence differences, and inherent dependencies in overlapping sequence features. Our nucleosomal positioning prediction algorithm, based on the idea of generalized hierarchical hidden Markov models (HGHMMs), was used to predict nucleosomal state based on the DNA sequence in yeast chromosome III, and compared with two other existing methods. The HGHMM method performed favorably among the three models in terms of specificity and sensitivity, and provided estimates that were largely consistent with predictions from the method of Yuan and Liu (2008). However, all the methods still give higher than desirable misclassification rates, indicating that sequence-based features may provide only limited information towards understanding positioning of nucleosomes. The method is implemented in the open-source statistical software R, and is freely available from the authors website.

Reference Type
Journal Article
Authors
Moser C, Gupta M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference