Reference: Xie Z, et al. (2012) Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell 11(4):599-606

Reference Help

Abstract


Budding yeast has served as an important model organism for aging research, and previous genetic studies have led to the discovery of conserved genes/pathways that regulate lifespan across species. However, the molecular causes of aging and death remain elusive, because it is very difficult to directly observe the cellular and molecular events accompanying aging in single yeast cells by the traditional approach based on micromanipulation. We have developed a microfluidic system to track individual mother cells throughout their lifespan, allowing automated lifespan measurement and direct observation of cell cycle dynamics, cell/organelle morphologies, and various molecular markers. We found that aging of the wild-type cells is characterized by an increased general stress and a progressive lengthening of the cell cycle for the last few cell divisions; these features are much less apparent in the long-lived FOB1 deletion mutant. Following the fate of individual cells revealed that there are different forms of cell death that are characterized by different terminal cell morphologies, and associated with different levels of stress and lifespan. We have identified a molecular marker - the level of the expression of Hsp104, as a good predictor for the lifespan of individual cells. Our approach allows detailed molecular phenotyping of single cells in the process of aging and thus provides new insight into its mechanism.

Reference Type
Journal Article
Authors
Xie Z, Zhang Y, Zou K, Brandman O, Luo C, Ouyang Q, Li H
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference