Take our Survey

Reference: Nakabayashi J (2012) Optimal ratio of scaffold complex to free Fus3 to maximise the accumulation of phosphorylated Fus3 in yeast pheromone signalling pathway. IET Syst Biol 6(1):9-21

Reference Help

Abstract


In this study, the author considers the design rule of the intracellular signalling pathway. In yeast pheromone signalling pathway, scaffold Ste5 tethers the components of signalling pathway, Ste11, Ste7 and Fus3. Even though scaffold complex is independently produced before stimuli, excessively expressed Fus3 as compared with scaffold exists in cytoplasm as free kinase. How the ratio of scaffold complex to the free Fus3 is determined is not clear yet. First, the contribution of free Fus3 to signal transduction is theoretically shown by using a simplified model of pheromone signalling pathway. Next, the optimum expression levels of Ste5, Ste11, Ste7 and Fus3 are systematically explored by using the detailed model and genetic algorithm under the constraint that the total expression level of these four genes is limited. Excessive expression of Fus3 is advantageous for the efficient signalling without stall of the signal transduction. The result suggests that the component of signalling pathway is optimally expressed to maximise the accumulation of phosphorylated Fus3 at a fixed time point under the constraint that the total gene expression is limited. The proposed model provides further insight into the signalling network from the point of view of not only its function but also its optimality.

Reference Type
Journal Article
Authors
Nakabayashi J
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference