Take our Survey

Reference: Davey HM, et al. (2012) Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 14(5):1249-60

Reference Help

Abstract

Although typically cosseted in the laboratory with constant temperatures and plentiful nutrients, microbes are frequently exposed to much more stressful conditions in their natural environments where survival and competitive fitness depend upon both growth rate when conditions are favourable and on persistence in a viable and recoverable state when they are not. In order to determine the role of genetic heterogeneity in environmental fitness we present a novel approach that combines the power of fluorescence-activated cell sorting with barcode microarray analysis and apply this to determining the importance of every gene in the Saccharomyces cerevisiae genome in a high-throughput, genome-wide fitness screen. We have grown > 6000 heterozygous mutants together and exposed them to a starvation stress before using fluorescence-activated cell sorting to identify and isolate those individual cells that have not survived the stress applied. Barcode array analysis of the sorted and total populations reveals the importance of cellular recycling mechanisms (autophagy, pexophagy and ribosome breakdown) in maintaining cell viability during starvation and provides compelling evidence for an important role for fatty acid degradation in maintaining viability. In addition, we have developed a semi-batch fermentor system that is a more realistic model of environmental fitness than either batch or chemostat culture. Barcode array analysis revealed that arginine biosynthesis was important for fitness in semi-batch culture and modelling of this regime showed that rapid emergence from lag phase led to greatly increased fitness. One hundred and twenty-five strains with deletions in unclassified proteins were identified as being over-represented in the sorted fraction, while 27 unclassified proteins caused a haploinsufficient phenotype in semi-batch culture. These methods thus provide a screen to identifying other genes and pathways that have a role in maintaining cell viability.

Reference Type
Journal Article
Authors
Davey HM, Cross EJ, Davey CL, Gkagkas K, Delneri D, Hoyle DC, Oliver SG, Kell DB, Griffith GW
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference