Reference: Fernandez-Cid A, et al. (2012) Glucose levels regulate the nucleo-mitochondrial distribution of Mig2. Mitochondrion 12(3):370-80

Reference Help

Abstract

Mig2 has been described as a transcriptional factor that in the absence of Mig1 protein is required for glucose repression of the SUC2 gene. Thus, until now, the main role assigned to Mig2 has been the functional redundancy to Mig1. In this study, we report that Mig2 has a double subcellular localization. As expected, in high-glucose conditions it is accumulated in the nucleus but in low-glucose conditions Mig2 has an unexpected mitochondrial localization and role in mitochondrial morphology. We describe that Mig2 physically interacts with the mitochondrial protein Ups1 in a glucose-dependent manner. We also show that ?mig2 mutant cells exhibit a fragmented network of mitochondrial tubules, a phenotype similarly observed in cells lacking Fzo1 and Ups1. Furthermore, Mig2 acts antagonistically with respect to the fission-promoting components, because mitochondrial aggregation induced by DNM1 deletion was rescued in the ?dnm1?mig2 double mutant. Thus, our studies have revealed an additional role for Mig2 as a novel factor required for the maintenance of fusion-competent mitochondria in Saccharomyces cerevisiae and strongly suggest that Mig2 could be involved in the cross talk between the nucleus and the mitochondria through Ups1 to regulate mitochondrial morphology in a glucose dependent manner.

Reference Type
Journal Article
Authors
Fernandez-Cid A, Riera A, Herrero P, Moreno F
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference