Reference: Martin HC, et al. (2012) Evolution of a membrane protein regulon in Saccharomyces. Mol Biol Evol 29(7):1747-56

Reference Help

Abstract

Expression variation is widespread between species. The ability to distinguish regulatory change driven by natural selection from the consequences of neutral drift remains a major challenge in comparative genomics. In this work, we used observations of mRNA expression and promoter sequence to analyze signatures of selection on groups of functionally related genes in Saccharomycete yeasts. In a survey of gene regulons with expression divergence between Saccharomyces cerevisiae and S. paradoxus, we found that most were subject to variation in trans-regulatory factors that provided no evidence against a neutral model. However, we identified one regulon of membrane protein genes controlled by unlinked cis- and trans-acting determinants with coherent effects on gene expression, consistent with a history of directional, nonneutral evolution. For this membrane protein group, S. paradoxus alleles at regulatory loci were associated with elevated expression and altered stress responsiveness relative to other yeasts. In a phylogenetic comparison of promoter sequences of the membrane protein genes between species, the S. paradoxus lineage was distinguished by a short branch length, indicative of strong selective constraint. Likewise, sequence variants within the S. paradoxus population, but not across strains of other yeasts, were skewed toward low frequencies in promoters of genes in the membrane protein regulon, again reflecting strong purifying selection. Our results support a model in which a distinct expression program for the membrane protein genes in S. paradoxus has been preferentially maintained by negative selection as the result of an increased importance to organismal fitness. These findings illustrate the power of integrating expression- and sequence-based tests of natural selection in the study of evolutionary forces that underlie regulatory change.

Reference Type
Journal Article
Authors
Martin HC, Roop JI, Schraiber JG, Hsu TY, Brem RB
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference