Reference: Yao F, et al. (2012) Independent Principal Component Analysis for biologically meaningful dimension reduction of large biological data sets. BMC Bioinformatics 13:24

Reference Help

Abstract


BACKGROUND: A key question when analyzing high throughput data is whether the information provided by the measured biological entities (gene, metabolite expression for example) is related to the experimental conditions, or, rather, to some interfering signals, such as experimental bias or artefacts. Visualization tools are therefore useful to better understand the underlying structure of the data in a 'blind' (unsupervised) way. A well-established technique to do so is Principal Component Analysis (PCA). PCA is particularly powerful if the biological question is related to the highest variance. Independent Component Analysis (ICA) has been proposed as an alternative to PCA as it optimizes an independence condition to give more meaningful components. However, neither PCA nor ICA can overcome both the high dimensionality and noisy characteristics of biological data. RESULTS: We propose Independent Principal Component Analysis (IPCA) that combines the advantages of both PCA and ICA. It uses ICA as a denoising process of the loading vectors produced by PCA to better highlight the important biological entities and reveal insightful patterns in the data. The result is a better clustering of the biological samples on graphical representations. In addition, a sparse version is proposed that performs an internal variable selection to identify biologically relevant features (sIPCA). CONCLUSIONS: On simulation studies and real data sets, we showed that IPCA offers a better visualization of the data than ICA and with a smaller number of components than PCA. Furthermore, a preliminary investigation of the list of genes selected with sIPCA demonstrate that the approach is well able to highlight relevant genes in the data with respect to the biological experiment.IPCA and sIPCA are both implemented in the R package mixomics dedicated to the analysis and exploration of high dimensional biological data sets, and on mixomics' web-interface.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Yao F, Coquery J, Le Cao KA
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference