Reference: Tian Y, et al. (2012) Cell cycle synchronization by nutrient modulation. Integr Biol (Camb) 4(3):328-34

Reference Help

Abstract


Living cells respond to changing environments by regulating their genes and activities. In unicellular organisms such as yeasts, the cell division cycle is coupled to the nutrient availability. However, it is unclear how tight this coupling is and how the intrinsic time scales of the different cell cycle processes respond to varying nutrient conditions. Here we study the cell cycle behavior of the budding yeast Saccharomyces cerevisiae in response to periodically modulated nutrient availability, using a microfluidic platform which allows for longtime cultivation, programmed medium switching, and automated time-lapse image acquisition. We observe that the division cycle of the yeast cells can follow a periodically modulated medium so that the whole population can be driven into synchrony. When the period of the nutrient modulation is optimized, as many as 80% of the cells in a population are continuously synchronized. The degree of synchronization as a function of the nutrient modulation period can be qualitatively captured by a stochastic phenomenological model. Our work may shed light on the coupling between the cell growth and cell division as well as provide a nontoxic and non-invasive method to continuously synchronize the cell cycle.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural | Research Support, U.S. Gov't, Non-P.H.S.
Authors
Tian Y, Luo C, Lu Y, Tang C, Ouyang Q
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference