Reference: Huang T, et al. (2012) Deciphering the effects of gene deletion on yeast longevity using network and machine learning approaches. Biochimie 94(4):1017-25

Reference Help

Abstract

Longevity is one of the most basic and one of the most essential properties of all living organisms. Identification of genes that regulate longevity would increase understanding of the mechanisms of aging, so as to help facilitate anti-aging intervention and extend the life span. In this study, based on the network features and the biochemical/physicochemical features of the deletion network and deletion genes, as well as their functional features, a two-layer model was developed for predicting the deletion effects on yeast longevity. The first stage of our prediction approach was to identify whether the deletion of one gene would change the life span of yeast; if it did, the second stage of our procedure would automatically proceed to predict whether the deletion of one gene would increase or decrease the life span. It was observed by analyzing the predicted results that the functional features (such as mitochondrial function and chromatin silencing), the network features (such as the edge density and edge weight density of the deletion network), and the local centrality of deletion gene, would have important impact for predicting the deletion effects on longevity. It is anticipated that our model may become a useful tool for studying longevity from the angle of genes and networks. Moreover, it has not escaped our notice that, after some modification, the current model can also be used to study many other phenotype prediction problems from the angle of systems biology.

Reference Type
Journal Article
Authors
Huang T, Zhang J, Xu ZP, Hu LL, Chen L, Shao JL, Zhang L, Kong XY, Cai YD, Chou KC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference