Take our Survey

Reference: Busby MA, et al. (2011) Expression divergence measured by transcriptome sequencing of four yeast species. BMC Genomics 12(1):635

Reference Help

Abstract

ABSTRACT: BACKGROUND: The evolution of gene expression is a challenging problem in evolutionary biology, for which accurate, well-calibrated measurements and methods are crucial. RESULTS: We quantified gene expression with whole-transcriptome sequencing in four diploid, prototrophic strains of Saccharomyces species grown under the same condition to investigate the evolution of gene expression. We found that variation in expression is gene-dependent with large variations in each gene's expression between replicates of the same species, confounding the identification of genes differentially expressed across species. To address this, we developed a statistical approach to establish significance bounds for inter-species differential expression in RNA-Seq data based on the variance measured across biological replicates. This metric estimates the combined effects of technical and environmental variance, as well as Poisson sampling noise by isolating each component. Despite a paucity of large expression changes, we found a strong correlation between the variance of gene expression change and species divergence (R2=0.90). CONCLUSION: We provide an improved methodology for measuring gene expression changes in evolutionary diverged species using RNA Seq, where experimental artifacts can mimic evolutionary effects.

Reference Type
Journal Article
Authors
Busby MA, Gray JM, Costa AM, Stewart C, Stromberg MP, Barnett D, Chuang JH, Springer M, Marth GT
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference