Reference: Chen XF, et al. (2012) The Rpd3 core complex is a chromatin stabilization module. Curr Biol 22(1):56-63

Reference Help

Abstract

The S. cerevisiae Rpd3 large (Rpd3L) and small (Rpd3S) histone deacetylase (HDAC) complexes are prototypes for understanding transcriptional repression in eukaryotes [1]. The current view is that they function by deacetylating chromatin, thereby limiting accessibility of transcriptional factors to the underlying DNA. However, an Rpd3 catalytic mutant retains substantial repression capability when targeted to a promoter as a LexA fusion protein [2]. We investigated the HDAC-independent properties of the Rpd3 complexes biochemically and discovered a chaperone function, which promotes histone deposition onto DNA, and a novel activity, which prevents nucleosome eviction but not remodeling mediated by the ATP-dependent RSC complex. These HDAC-independent activities inhibit Pol II transcription on a nucleosomal template. The functions of the endogenous Rpd3 complexes can be recapitulated with recombinant Rpd3 core complex comprising Sin3, Rpd3, and Ume1. To test the hypothesis that Rpd3 contributes to chromatin stabilization in vivo, we measured histone H3 density genomewide and found that it was reduced at promoters in an Rpd3 deletion mutant but partially restored in a catalytic mutant. Importantly, the effects on H3 density are most apparent on RSC-enriched genes [3]. Our data suggest that the Rpd3 core complex could contribute to repression via a novel nucleosome stabilization function.

Reference Type
Journal Article
Authors
Chen XF, Kuryan B, Kitada T, Tran N, Li JY, Kurdistani S, Grunstein M, Li B, Carey M
Primary Lit For
Additional Lit For
Review For

Interaction Annotations

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations

Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations

Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference