Take our Survey

Reference: Kolaczkowska A, et al. (2012) The regulatory inputs controlling pleiotropic drug resistance and hypoxic response in yeast converge at the promoter of the aminocholesterol resistance gene RTA1. FEMS Yeast Res 12(3):279-92

Reference Help

Abstract


Aminosterols possessing potent fungicidal activity are attractive alternatives to currently available antifungals. Although their precise mechanism of action is not fully understood, the effect of 7-aminocholesterol (7-ACH) involves a partial block of ?8-?7 isomerase and C-14 reductase. The function of RTA1 encoding the 7-transmembrane helix protein, cloned as the multicopy suppressor of 7-ACH toxicity in yeast, remains unclear. In this report, we show that Rta1p is localized in the plasma membrane and has a high rate of metabolic turnover, as revealed by fluorescence microscopy, cell fractionation and pulse-chase experiments. Analysis of the RTA1-lacZ reporter activity and deletion mapping of the promoter allowed the identification of the regions responsible for negative regulation by Tup1 and the two synergistically acting repressors of hypoxic genes, Rox1p and Mot3p. This was in line with increased RTA1-mediated resistance to 7-ACH under hypoxic conditions, associated with increased Rta1p level. Overexpression of RTA1 also affected the response to the signalling sphingolipid precursor phytosphingosine. Positive inputs of two transcriptional activators Pdr1p and Upc2p were also detected, indicating a regulatory link common to sterol biosynthetic genes as well as those involved in pleiotropic drug resistance and sphingolipid metabolism.

Reference Type
Journal Article
Authors
Kolaczkowska A, Manente M, Kolaczkowski M, Laba J, Ghislain M, Wawrzycka D
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference