Take our Survey

Reference: Silva AC, et al. (2012) The replication-independent histone H3-H4 chaperones HIR, ASF1, and RTT106 co-operate to maintain promoter fidelity. J Biol Chem 287(3):1709-18

Reference Help

Abstract


RNA polymerase II initiates from low complexity sequences so cells must reliably distinguish "real" from "cryptic" promoters and maintain fidelity to the former. Further, this must be performed under a range of conditions, including those found within inactive and highly transcribed regions. Here, we used genome-scale screening to identify those factors that regulate the use of a specific cryptic promoter and how this is influenced by the degree of transcription over the element. We show that promoter fidelity is most reliant on histone gene transactivators (Spt10, Spt21) and H3-H4 chaperones (Asf1, HIR complex) from the replication-independent deposition pathway. Mutations of Rtt106 that abrogate its interactions with H3-H4 or dsDNA permit extensive cryptic transcription comparable with replication-independent deposition factor deletions. We propose that nucleosome shielding is the primary means to maintain promoter fidelity, and histone replacement is most efficiently mediated in yeast cells by a HIR/Asf1/H3-H4/Rtt106 pathway.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, N.I.H., Extramural
Authors
Silva AC, Xu X, Kim HS, Fillingham J, Kislinger T, Mennella TA, Keogh MC
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Gene Ontology Term Qualifier Aspect Method Evidence Source Assigned On Annotation Extension Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Experiment Assay Construct Conditions Strain Background Reference